VHF Control panels 614U -1 .. 7 or C4074/ARC-73

The Collins VHF airborne radio set (51X-2B receiver and 17L-7 transmitter) are controlled by one of the following control panels. The frequency range of each control panels is a bit confusing.
The 51X-2B receiver range $108-151.95 \mathrm{MHz}$.
The $17 \mathrm{~L}-7$ transmitter range $118-151.95 \mathrm{MHz}$
The 17L-7A transmitter range $116-149.95 \mathrm{MHz}$ (by different crystal stacking)

614U-1 with Single Channel Simplex(SCS) or Dual Ch. Simplex or Duplex (DCS/DCD) switch. Tx range $118-151.95 \mathrm{MHz}$ Rx range 118-151.95 MHz
(Hi band above 135.95 MHz can be blocked by removable end stop)

614U-2 same circuit, gray surface and knobs Front text: VHF COMM

614U-3 without extra switch
Intended for NAV -only sets with ATC converter instead of the 17L-7 transmitter. Has control of the $51 \mathrm{~V}-3$ GlideSlope receiver. Tx range none, but 20 channel GS Rx range $108-151.95 \mathrm{MHz}$
614U-4 same circuit, gray surface and knobs Front text: VHF NAV

614U-5 with SCS - DCS/DCD switch 614U-6 with COMM -NAV/COMM switch
$614 \mathrm{U}-5$ is identical to the military
C-4074/ARC73
Tx range $116-149.95 \mathrm{MHz}$
(Hi band above 133.95 MHz)
Rx range 116-149.95
Front text: VHF
Dual channel possible at $118 . \mathrm{xx}, 119,120,127,128$ and $129 . \mathrm{xx} \mathrm{MHz}$ but any other frequency can be selected with soldering links on the outer MHz selector switch

ARC73 116-149.95 Tx, 116-151.95 Rx
ARC73A 116-149.95 Tx 108-151.95 Rx

Controls

The 614U-6 Remote Control channels the 51X-2 through both the aircraft navigation and communication frequencies. In addition, the unit provides for automatic selection of glideslope frequencies whenever an ILS channel is selected.
The 614U-7 Remote Control, in addition to the above, also provides for automatic selection of DME frequencies whenever a VOR channel is selected.
Both controls channel the 51X-2 in 50kc steps over its entire frequency range from $108.0-151.95 \mathrm{mc}$.

VHF Control Panels $614 \mathrm{U}-1,2,3,3 \mathrm{~A}, 4,5,6$ or C4074/ARC-73

The 614 U panel has two independent 13 -wire frequency control switches, one for $51 \mathrm{X}-2$ receiver and one for the $17 \mathrm{~L}-7$ transmitter.

Switch pos.			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23 24 Skip	
			---------- NAV ---------					--------- COMM --------									----------- EXTENDED ----------									
Even Odd	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	M	$\begin{aligned} & 108 \\ & 109 \end{aligned}$	$\begin{aligned} & 110 \\ & 111 \end{aligned}$	$\begin{aligned} & 112 \\ & 113 \end{aligned}$	$\begin{aligned} & 114 \\ & 115 \end{aligned}$	116 117	118	$\begin{aligned} & 120 \\ & 121 \end{aligned}$	122 123	$\begin{aligned} & 124 \\ & 125 \end{aligned}$	$\begin{aligned} & 126 \\ & 127 \end{aligned}$		$\begin{aligned} & 130 \\ & 131 \end{aligned}$	$\begin{aligned} & 132 \\ & 133 \end{aligned}$		$\begin{aligned} & 136 \\ & 137 \end{aligned}$	138 139		$\begin{aligned} & 142 \\ & 143 \end{aligned}$	144 145	$\begin{aligned} & 146 \\ & 147 \end{aligned}$	$\begin{aligned} & 148 \\ & 149 \end{aligned}$	150 151	$\begin{aligned} & 152 \\ & 153 \end{aligned}$	154 155
TRANSMIT 17L-7 pin	P2-7 P2-8 P2-9 P2-10 P1-7	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$	X		X	$\begin{aligned} & \mathrm{X} ? \\ & \mathrm{X} \end{aligned}$	X	X X	X	X	X	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{array}{\|l} \mathrm{X} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{array}{\|l} \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \end{array}$	X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X	X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X
$\begin{aligned} & \text { RECEIVE } \\ & 51 \mathrm{X}-2 \text { pin } \end{aligned}$	6 7 8 9 20	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$	X X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \\ \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X	$\begin{gathered} \mathrm{X} \\ \mathrm{X} \end{gathered}$	X	x X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X X X	X X X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X	X	X X	X X	X X X	X X X	X X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$

Pin nr on 614U control panel

MHZ select $A \frac{\mathbf{R x}}{1} \frac{\mathbf{T x}}{20}$
$\begin{array}{lll}\text { C } & 3 & 22 \\ \text { D } & 4 & 23\end{array}$
Fract. MHz select
$\begin{array}{cll}\mathrm{E} & 5 & 24 \\ \mathrm{~F} & 6 & 25 \\ \mathrm{G} & 7 & 26 \\ \mathrm{H} & 8 & 27\end{array}$
$\begin{array}{llll} & \\ \text { Odd MHz } & \mathrm{J} & 9 & 28\end{array}$
$\begin{array}{llll}50 \mathrm{kHz} & \mathrm{K} & 10 & 29\end{array}$
$\begin{array}{llll}00 \mathrm{kHz} & \mathrm{L} & 11 & 30\end{array}$
$\begin{array}{cccc}\text { Even MHz } & \text { M } & 12 & 31 \\ & \text { Extende } & \text { N } & 13 \\ 32\end{array}$
$10 \mathrm{k} \Omega$ Squelch pot $14 \quad 33 \mathrm{DCD}$
150Ω Vol.pot top $15 \quad 34$ power switch to 19
$\begin{array}{lll}\text { Vol.pot wiper } & 16 & 35\end{array} \mathbf{g n d}$
Vol pot cold $\quad 17 \quad 36$ Dial lamps
gnd $\quad 18 \quad 37$ Dial lamps gndPink area not accessibleGreen area 108-117.95 Rx only accessible in 614U-3 or 3A

Fractional MHz control lines E,F,G,H (same code for Rx and Tx) :

Line	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	Rx pin $51 \mathrm{X}-2 \mathrm{~B}$	Tx pin $17 \mathrm{~L}-7$
E	X		X			X	X				10	$\mathrm{P} 2-3$
F		X		X			X	X			11	$\mathrm{P} 2-4$
G			X	X	X	X		X	X		12	$\mathrm{P} 2-5$
H				X	X	13	$\mathrm{P} 2-6$					

J-line to Rx Pin 14 resp. Tx pin P1-17 connected to ground for odd MHz
K-line to Rx Pin 15 resp. Tx pin P2-12 connected to ground for x 0 MHz
L-line to Rx Pin 16 resp. Tx pin P2-22 connected to ground for x 5 MHz
M line to RxPin 17 resp. Tx pin P2-11 connected to ground for even MHz
N -line to Rx Pin 20 resp. Tx pin P1-7 connected as indicated for .extended MHz
pin 33 connects to ground when DCD selected and freq $=118,119,120,127,128$ or 129 MHz pin 34 connects to pin 19 when power switch is "ON"

Positions marked " X " above are connected to ground in the control panel
Positions not marked " X " are interconnected in the control panel and not to ground.

Switch decks

One MHz switch has 4 layers in 24 positions in 2 MHz steps from 108 MHz
One kHz switch has 2 layers in 20 positions in 50 kHz steps

614U -1 Controls 51X-2 and 17L-7
614U -5 Same with preselectable MHz freq that allow dual channel mode

Receive and Transmit frequency control

The frequency control for the receiver and transmitter is identical, and consists of a MHz switch and a fractional MHz switch.
Each switch has a single stator, and

- a rotor with 1 code disc on each side for the fractional MHz , or - a rotor with 2 code discs on each side for the MHz switch.

The complete MHz switch is shown here, with 4 layers in 24 positions, rotated in 2 MHz steps from 108 MHz (shown) to 154 MHz .

Glide slope frequency control

The 614U-3 can control the 51X-2 receiver and a 20 channel glide slope receiver like the Collins 51V-3, the Bendix GSA-8 or the AN/ARN-31.

The Glide Slope (GS) channels are paired with the LOC channels between 108 and 112 MHz .
LOC and GS channels were those days :
$108.1,108.3,108.5,108.7 .108 .9,109.1,109.3,109.5,109.7$. 109.9, $110.1,110.3,110.5,110.7 .110 .9,111.1,111.3,111.5,111.7 .111 .9$. The VOR channels are in-between these, at 108.2, 108.4, etc.

The $614 \mathrm{U}-3$ control has an extra switch to select $.1, .3, .5, .7$, or .9 as fractional MHz , and an extra contact on the small MHz switch that rotates every MHz with 10 positions. The odd/even MHz contacts are already there, one pair is used for the J . M selection (see page 1), and there are two spare pairs, one is used for the GS.
Another contact closes at 108 and 111 MHz , and then every 10 MHz , so at 118 and 121 Mhz etc.
The GS receiver is switched on by the 51X-2 receiver, that has an output contact for the LOC channels, so the phantom frequencies do no harm.

