A 400Hz, 3-phase 60VA Power Supply

10-10-2020 / Koos Bouwknegt

Many avionics in the fifties and sixties were powered by 27 Vdc and 3 -phase $115 \mathrm{~V}, 400 \mathrm{~Hz}$ ac without neutral., one phase connected to ground. The 3-phase supply was made either by an alternator or by a dynamotor, powered from the 27 Vdc bus. They made a lot of noise and heat.

```
Input voltage 25...30V dc
    Input current < 10x I-out
Output voltage 3x 115 \pm5 V
Output current 0.3A rms
    Distortion < 4% THD
    Sound 70 dBA
        Size 10 x 10 x 10 cm
    weight 1 kg
```

Today, 60 years later, such a power supply can be made with cheap components, a much higher efficiency, less noise, and very compact. I made one, based on a credit card sized $2 \times 100 \mathrm{~W}$ class-D stereo amplifier. The input is the 27 Vdc bus, the output is floating 3 -line without neutral, $3 \mathrm{x} 115 \mathrm{~V}, 400 \mathrm{~Hz}, 0.3 \mathrm{~A}$ rms.
A new board generates two accurate $400 \mathrm{~Hz} / 2 \mathrm{~V}$ sine waves with 60 degrees phase difference. These signals are amplified to 16 V rms voltages (45 V peak-peak), and transformed to 115 V in two identical xformers.

The box is $10 \times 10 \times 10 \mathrm{~cm}$, just 1 litre, and the mass is 1 kg .

The two C-core transformers are attached to the left side of the box. On top you see the generator board, starting with a 4800 Hz oscillator driving a 6 stage shift register providing 12 square waves, at 30 deg . intervals. A stepped wave is then made by proper adding these square waves to get a near sine wave. RC filtering gives it less than 1% distortion.

The class-D amplifier is in the middle of the box, and not visible on this picture.
The amplifier module is available from AliExpress for less then $€ 10$.

The amplifier is advertised as $2 \times 100 \mathrm{~W}$ ($20 \mathrm{Vrms} \times 5 \mathrm{~A}$ rms each channel) for a short time. With a fan, about 2.5 A rms continuous per channel is possible. There is only one chip (TDA7498) on this module, running at 350 kHz switching frequency. Each channel has a full H bridge output.
Cooling of the amplifier and the RF output filter is done with a 24 V fan directly above the heatsink.
The power supply is completed with two identical transformers and a voltmeter. Four C-cores were salvaged from a single power transformer. The cores have an iron-section of $8 \times 25=200 \mathrm{~mm}^{2}$, and the transfer ratio is $1: 7.6$.
A selector switch connects either the SR, RT, or TS voltages to the meter.
The output voltage is adjusted by the "volume" potmeter of the amplifier. Minor adjustments are on the generator board for balance and frequency.
The over-all efficiency is 75% (nominal 60 W out is 80 W dc input)

Operating principle of the waveform generator

The hex D-latch CD40174 is clocked with 4800 Hz . A pattern with 6 "zero's" and 6 "ones" walks through this shift register at every clock pulse. This gives 6 symmetrical square waves on the outputs of the shift register all with a frequency of 400 Hz , and 30 degrees apart. The Reset input is used to suppress parasitic modes.
The square waves are added to get a stepped waveform, that has only the eleventh and higher harmonics. With a single RC filter, 2% total harmonic distortion (THD) is reached, with a second RC filter even 1%.

Figure 3 gives the 6 square waves from the hex-D latch, and how the two stepped waves are obtained. Example: Wave A is $\mathrm{Q} 2+\sqrt{ } 3 \mathrm{Q} 3+2 \mathrm{Q} 4+\sqrt{ } 3 \mathrm{Q} 5+\mathrm{Q} 6$

The generator printed circuit

Fig. 4
Two identical resistor arrays are used to sum up the square waves. Ideally, the resistor values should have the ratio $1: 2 / \sqrt{ } 3: 2$, example :

27k2: 31k4 : 54 k4 More practical, I used

27k2: 33k: 56k3

The opamp's feedback resistor is $5.6 \mathrm{k} \Omega$ or less to prevent overdrive of these opamps at the top of the stepped waveform. The outputs are 2 V rms sine waves at 400 Hz .

An RC filter on the output side removes glitches, improves the waveform, and mitigates RF disturbances from the PWM final amplifier. It also serves to increase the RT output voltage.

The complete circuit is shown below. The red and green sine symbols (A and B) correspond to the waveforms in fig.3. Because the TDA7498 chip has dual PWM outputs per channel, an output transformer must be used, even if only 20 Vrms is required.

Voltage adjustment is done with the "volume" pot on the amplifier. The RS and ST output voltages are made equal with the balance pot, the third, RT voltage is slightly increased by making the upper output cap 68 nF . This increases the A to B phase difference from 60° to approx. 65°

Rating

The continuous nominal load for the complete system is a symmetrical load of $3 \times 115 \mathrm{Vac} / 400 \mathrm{~Hz}$ with 0.3 A continuously. This is a rating of $115 \times 0.3 \times \sqrt{ } 3=60 \mathrm{VA}$. The nominal load is 3 resistors of 661Ω /20W in triangle. The short time rating is 1.6 x higher .

Fig. 6 The components (except the fan) shown below with (temporary) shunts to measure the current :

Symmetry

Using only two amplifiers in a 3-phase application requires transformers with a very low impedance, otherwise the RT voltage is too dependant on the load. The primary coil resistance should be $<1 \Omega$, the secondary $<8 \Omega$. It was impossible to find two suitable transformers, so I decided to make my own transformers with small C cores. The voltage unbalance is $<2 \%$ with symmetrical load.
With single-phase load, the unbalance can be 6%

Voltmeter

Soft start

Brute 27 Vdc application to both the oscillator board and amplifier gives a loud scream in the transformers at turnon. A softstart circuit was added to the oscillator board that gradually applies Vcc voltage to the opamps. The TDA7498 is standard muted the first 160 ms after application of the 27 Vdc supply.
As can be seen, the start up of the oscillator and shift register happens when the TDA7498 is still muted.

Rating

The power cube is designed for 60 VA 3 -phase output at $115 \mathrm{~V} / 400 \mathrm{~Hz}$. The line current is 0.3 A , and that is also the current in the secondary of each transformer. The primary current then is $0.3 \times 7.6=2.3 \mathrm{~A}$ plus the magnetizing current $(0.3 \mathrm{~A})$ is $2.6 \mathrm{~A} \mathrm{rms}(3.67 \mathrm{~A} \mathrm{pk})$

The transformers

Two equal transformers are made, with 50 primary turns, and 380 secondary turns. This is a turns ratio of 1: 7.6. Without load, this gives at least 121 V undistorted output at the lowest input Vdc of 25 V and 115 V with a 60 W balanced load. This corresponds to 16 Vrms on the primary winding.

The core has $25 \times 8=200 \mathrm{~mm}^{2}$ iron section. I used $\varnothing 0.35 \mathrm{~mm}$ enameled wire and $\varnothing 1.12 \mathrm{~mm}$.
The number of turns is simply what I could get on the bobbin in a single layer.

Primary per leg:
1 layer 25 turns, total $25 \times 2=50$ turns. width 31 mm
Secondary per leg:
2.4 layers, 75 turns each, total $75 \times 2.4 \times 2=380$ turns.

Two layers secondary lay on the bottom of the bobbin, then the primary in one layer, and on top (not shown) another 40 turns per leg, the legs are series connected.

From the two identical transformers, T1 has standard bobbins, T 2 has home-made bobbins, that I made from 2 mm pertinax. There is some difference in magnetizing current, possible due to a less flat pole faces.

	Trafol T	Trafo2
Bobbin	standard h	home made
Primary turns	$50 \quad 50$	50
Secondary turns	380 3	380
Magnetizing current @ 16V	0.23 0	0.51 A rms
Main inductance (secondary side)	0.50	0.3 H
Copper resistance (, ,	$6.7 \Omega \quad 6$	6.8 ת
Core loss @ 115V	$2 \quad 2$	2.3 W
Copper loss @ 0.3A	22	2 W
Nominal primary current	2.4 A rms ,	Ø 1.12 mm wire allows 2.85 A
Nominal secondary current	0.3 A rms	$\emptyset 0.35 \mathrm{~mm}$ wire allows 0.289 A
Core section	Afe $=8 \times 25 \mathrm{~m}$	$\mathrm{mm}=0.0002 \mathrm{~m}^{2}$
$\begin{aligned} \operatorname{Bmax}=\operatorname{Vrms} \cdot \sqrt{ } 2 /\left(\mathrm{N} \cdot \mathrm{~A}_{\mathrm{fe}} \cdot \omega\right)= & 115 \sqrt{ } 2 /(380 \times 0.0002 \times 2 \pi 400 \mathrm{~Hz})=1.05 \mathrm{~T} \text { peak } \\ \text { Mass } & 292 \text { gram } \end{aligned}$		

All OK, but the sound is high above 90 V output, at $\mathrm{Vdc}=25 \mathrm{~V}$ both when loaded and in no-load.
With 27 Vdc the sound is a little less and without a sharp note.

Output resistive impedance

Each transformer has 0.2Ω primary copper resistance, and 7Ω secondary copper resistance.
The amplifier output impedance (0.2Ω Rdson per FET) contributes to the losses and voltage drop under load. On each side of the transformers primary is a branch with two FETs, so 0.4Ω extra per transformer. The total resistive part of the output impedance is $7 \Omega+(0.2+0.4) \times 7.6^{2}=42 \Omega$

Test results

10-10-2020/kb

1. Voltages and losses

1.1 Output data without re-adjustment of voltage. Symmetric resistive load.

All with same amplifier output voltages, so different voltage drops are caused by the transformers.
Full load $3 \times 687 \Omega$ was made by using the 1 k and 2 k 2 loads in parallel.

Load	Iout	Pout	Vsr	Vrt	Vts	Loss	DC input
0	$0 \mathrm{~A} \sim$	0 W	111 V	117	115	6 W	$25 \mathrm{~V}-0.24 \mathrm{~A}$ incl fan
$3 \times 2 \mathrm{k} 2$	0.1	18	109	113	112	7.3	$24.5 \mathrm{~V}-1.0 \mathrm{~A}$
$3 \times 1 \mathrm{k}$	0.18	36	105	106	107	8.3	$22 \mathrm{~V}-1.9 \mathrm{~A}$
$3 \times 687 \Omega$	0.26	52	105	106	108	15	$26 \mathrm{~V}^{*}-2.5 \mathrm{~A}$
* stabilized power supply $26 \mathrm{~V} / 6 \mathrm{~A}$ max							

Observation: - The output voltage drops 8 V at 0.2 A , so the internal impedance of the power supply is 40Ω.
This is about the copper + fet resistances so the inductive part is negligible.

- The unbalance is highest at no-load because the unbalance was minimized at medium load.
1.2 Output data with re-adjustment of voltage. Symmetric resistive load.

All with a regulated 26.3 V power supply

Load	Iout	Pout	Pin	Idc	Vsr	Vrt	Vts	Loss	Efficiency
0	0	0	W	6.6 W	0.25 A	111 V	116	116	6.6 W
	0.1 A	18.8	27.2	1.03	115	119	118	8.4	69
3x 2k2	0.2	39.7	53.6	2.03	115	117	117	13.8	74
$3 \times 1 \mathrm{k}$	0.3	57.5	77	2.93	115	114	117	19.5	75
3×687	x								

Observation: The loss can be modelled as $7 \mathrm{~W}+3 \times 50 \Omega \times$ Iout 2. The switching loss and fan consumption are constant @ fixed Vdc, even at no load, say 7W. The load dependant losses rise with the square of the output current, dissipated in a 50 ohm resistor in each line.
At 0-0.1-0.2-0.3A, this formula predicts 7-8.5-13-20 W loss
1.3 Output data with single phase loads (line-line connected)

Load	Iout	Pout	Pin	Idc	Vsr	Vrt	Vts	Loss $^{\text {unbal }}$ *	
1k1 SR	0.104	12.0	20	0.76	$\underline{115}$	122	122	8 W	7 V
1k1 RT	0.108	12.8	21.3	0.81	117	$\underline{119}$	120	8.5	3
1k1 TS	0.103	11.8	20	0.76 A	116	119	$\underline{114}$	8.2	5
500Ω SR	0.224	25.1	35.2	1.34	$\underline{112}$	120	$\underline{121}$	10.1	9
500Ω RT	0.232	26.9	39.7	1.51	118	$\underline{116}$	120	12.8	4
500Ω TS	0.228	26.0	36.0	1.37	115	120	$\underline{114}$	10.0	6

*) unbal is the highest difference between line-line voltages
Observation: A single-phase load connected between the (transformed) outputs of the amplifier gives the lowest unbalance, but with the highest losses.
1.4 Output data with capacitive or inductive load
Load Iout Pout Pin Idc Vsr Vrt Vts Loss Efficiency

0
1uF RS
1uF RT

2.0 Dynamic behavior

2.1 Resistive load steps
to be measured

3.0 Distortion and RFI

Distortion is below 2%, not visible on the oscilloscope.
The PWM switching frequency $(300 \mathrm{kHz})$ is not dominant in the radiated spectrum.
The spectrum shown is with full load. The no-load spectrum has a dominant fifth harmonic at 1.5 MHz .

B $200 \mathrm{kHz} /$ div $\quad \mathrm{Mid}=1.216 \mathrm{MHz}$
$10 \mathrm{dBm} /$ div Topline $=-40 \mathrm{dBm}$

The box

The complete unit is a cube with $10 \times 10 \times 10 \mathrm{~cm}=1$ litre. Mass is 1 kg .

perforated

